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Abstract. Magnetization processes in Ni nanowire arrays are investigated. The wires are
produced by electrodepositing Ni into porous anodic alumina and exhibit coercivities of the order
of 0.05 T (500 Oe) along the wire axis. Transmission-electron microscopy of freed wires shows that
the wires are polycrystalline and resemble a chain of nanocrystallites. To model the hysteresis loops,
the wires are treated as one-dimensional random-anisotropy magnets where the magnetocrystalline
bulk anisotropy is a weak perturbation to the leading anisotropy contribution. The calculation yields
an analytical equation for the magnetization as a function of the applied magnetic field. For small
and moderate reversed fields, the agreement between theory and experiment is very good, but the
applicability of the model breaks down close to the coercive field. This failure is explained by the
neglect of higher-order perturbation terms describing, for example, magnetic localization effects.

Periodic arrays of nanoscaled magnetic dots and wires are of great interest as patterned
magnetic recording media and sensor devices [1]. They are also ideal systems in which
to study magnetic interactions and magnetization processes [2–4]. Current nanofabrication
techniques for making such structures include electron-beam [5], interferometric lithography
[6] and microprobe-assisted manipulation [7], to expose a controlled electron beam or light to
a resist-covered surface or to manipulate atoms by a microprobe. These methods are relatively
time consuming and expensive. Another method is electrodeposition of metal into anodic
porous alumina, created by anodizing Al in acidic electrolyte, with more or less uniform
pore diameters of 10 to 100 nm and spacing of 30 to 120 nm depending on the anodization
conditions. Magnetic materials such as Fe, Co and Ni can be electrodeposited into the pores
forming magnetic nanowire arrays [3].

A topic of practical and theoretical interest is the modelling of the wires’ hysteresis loops
[2], which requires knowledge of the wires’ real structure and amounts to the calculation of
the local magnetization direction as a function of the external magnetic field. From a more
general point of view, the theoretical interest in nanowires is linked to the complicated problem
of magnetization reversal in real magnets. In fact, nanowires are of particular interest, because
their magnetization reversal is not obscured by difficult-to-control bulk domains. Modelling the
wires as defect-free long ellipsoids of revolution leads to nucleation fields which are generally
larger than the observed coercivities [8, 9]. Since the nucleation modes and fields considered
in [8, 9] are exact solutions of the nucleation problem, one has to ascribe the discrepancy
between theory and experiment to deviations from the ideal wire shape and structure [10, 11].
The wires considered in this letter are particularly interesting, because their small radius,
about 5 nm, corresponds to the coherent-rotation mode rather than to the somewhat more
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complicated curling mode, and because the wires are well characterized by transmission-
electron microscopy (TEM). In this letter, we determine the morphology of Ni nanowire arrays
by TEM and compare the observed hysteresis loops with the predictions of a one-dimensional
random-anisotropy model.

The preparation of the wire arrays is similar to that described in reference [3]. Briefly,
a 99.997% purity Al sheet was used as a starting material; it was first electropolished in
a mixed solution of 165 ml 65% HClO4, 700 ml ethanol and 100 ml 2-butoxyethanol and
137 ml H2O, and then anodized in 15% H2SO4 at 10 V dc for 30 min. The Ni nanowires were
electrodeposited into the anodized template using an electrolyte containing 0.1 M NiSO4·6H2O
and 45 g l−1 boric acid. The electrodeposition of the Ni wires was carried out with an alternating
current of 15 V, frequency of 250 Hz and temperature of 55 ◦C.

Well-ordered nanoarrays are formed by three-step anodization:

(i) anodizing Al at 40 V dc in 3% oxalic acid for about ten minutes and then removing
the oxide layer formed by immersion into the mixed chromic and phosphoric acid for
15 minutes,

(ii) anodizing for 12 hours and removing the top oxide layer again, followed by
(iii) a third three-minute anodization step.

Figure 1 shows the atomic force microscopy (AFM) top view of the template after the three-
step anodization. When anodizing Al in 15% sulphuric acid, the diameter and spacing are
about 10 nm and 35 nm, respectively.

To determine the structure, diameter and length of the Ni nanowires by TEM, the nanowires
were released by immersing the specimen in a mixed solution of 0.2 M chromic acid and 0.4 M

Figure 1. An AFM top view of a nanopore array in anodic alumina prepared by three-step
anodization. The anodization was conducted in 3% oxalic acid at 40 V.
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phosphoric acid. Figure 2 shows a high-resolution TEM image of single Ni nanowires liberated
from the template. Each wire is polycrystalline, consisting of a chain of single-crystalline
segments, and the crystallite size is around 10 nm. We also see that the wires’ surfaces are not
free of defects and inhomogeneities [12]. As emphasized in reference [10], these imperfections
are of great importance for the theoretical understanding of nanomagnets.

To investigate the hysteresis behaviour of the wires, magnetic measurements were carried
out with an alternating-gradient force magnetometer (AGFM). Magnetic nanowire arrays in
alumites exhibit easy magnetization along the wire axis, that is, perpendicular to the film plane,
and the coercivity can be as high as 0.048 T (480 Oe) for nanowire arrays with diameter of
about 10 nm. The coercivity is ascribed to the comparatively strong shape anisotropy of the
wires [2, 13]. To account for the interwire magnetostatic interactions, the external field has
been corrected by a demagnetizing field (−DM), where D ≈ f is the area (or volume) fraction
of the wires in the film [3].

The polycrystallinity of the wires and the rough wire surface (see figure 2) mean that the
wires must be treated as random-anisotropy ferromagnets. Random-field [14] and random-
anisotropy phenomena have attracted much attention in the past due to their interesting
dimensional dependence [15–18]. Essentially, the random preferential magnetization
directions of the crystallites (size L) favour magnetization misalignment but must compete
against the exchange and external fields, which favour magnetization alignment. Three-
dimensional nanostructures have been treated by Chudnovsky et al [17], although no hysteresis
loops have been calculated. Here we consider the wire as a thin chain of polycrystallites whose
grain boundaries are at random positions, the average segment length (grain length) being L.
The behaviour of the wires is determined by the competition between interatomic exchange
(exchange stiffness A), magnetostatic interactions and magnetic anisotropy (Keff ), and we
trace the magnetization M(r) = Mss(r) as a function of the external field H = Hez. The
starting point is the micromagnetic energy [13]

E =
∫

(A(∇s)2 − Keff (n · s)2 − µ0MsH · s) dV (1)

where the unit vector n = n(r) denotes the (random) local easy axis. The effective anisotropy
constant Keff incorporates shape, magnetocrystalline and magneto-elastic anisotropy contrib-
utions. Higher-order anisotropy constants are neglected in equation (1), because they are fairly
small and do not yield new physics beyond the randomness and non-linearity implied by Keff .
Since the wire surface (figure 2(b)) exhibits some randomness, the associated magnetic surface
charges add to the random magnetocrystalline anisotropy. Note that due to the assumption of
very thin wires, there is no non-local magnetostatic term in equation (1).

The easy axis n closest to ez and the normalized magnetization vector can be written as

n(r) =
√

1 − a2(r)ez + a(r) (2)

and

s(r) =
√

1 − m2(r)ez + m(r). (3)

Here a(r) and m(r) are the easy-axis and magnetization components perpendicular to the
wire (in the film plane). For not-too-large reverse fields we can restrict our consideration to
terms linear in the small quantity m. In particular, ignoring a physically irrelevant zero-point
energy, we obtain from equation (1) the anisotropy term −Keff (n · s)2 = −2Keff m · a.
Minimizing the total magnetic energy with respect to m then yields, in one dimension, the
linearized differential equation

−A
d2m

dz2
+

(
Keff +

1

2
µ0MsH

)
m = Keff a(z). (4a)
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Figure 2. High-resolution TEM micrographs of Ni nanowires liberated from the anodic alumites.
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This equation means that the polycrystalline easy-axis disorder a(z) acts as a random
inhomogeneity. It can also be written as

−d2m

dz2
+ κ2m = f(z) (4b)

where

κ2 = Keff

4A

(
1 +

H

H0

)
(5)

and f(z) = Keff a(z)/A. Note that the parameter H0 = 2Keff /µ0Ms is the anisotropy field
corresponding to Keff .

The formal solution of equation (4b) is

m(z) = 1

2κ

∫ +∞

−∞
exp(−κ|z − ξ |)f(ξ) dξ. (6)

Due to equation (3), the magnetization, averaged over the wire length, is given by

M(H) = 〈Mz〉 = Ms

(
1 − 〈m2(z)〉

2

)
(7)

where higher-order terms associated with equations (1) and (3) are neglected.
The main problem is now that of evaluating the average 〈m2(z)〉. Since we assume

that the grain boundaries are randomly distributed, the correlation function is given by
〈a(0) · a(z0)〉 = c0 exp(−z0/L).

In this equation, the parameter c0 = 〈a2〉 describes the strength of the wire disorder and
incorporates both magnetocrystalline and magnetostatic contributions. For the case considered
of nearly ideal wires we expect c0 to be much smaller than 1. The average magnetization is
given by

〈m2(z)〉 = c0K
2
eff

4A2κ2

∫ +∞

−∞

∫ +∞

−∞
exp(−κ|z − ξ | − κ|z − η| − |ξ − η|/L) dη dξ. (8)

The double integral in equation (8) has the value 2(2κ + 1/L)/[κ(κ + 1/L)2], so, with
equation (7),

M(H) = Ms

(
1 − c0K

2
eff (2κ + 1/L)

4A2κ3(κ + 1/L)2

)
. (9)

In this equation, the field dependence is hidden in κ(H). This equation can be rewritten as

M(H) = Ms

(
1 − c0K

2
eff

4A2

{[
2

√
Keff

A

√
1 +

µ0MsH

2Keff

+
1

L

]

×
[(

Keff

A

)3/2(
1 +

µ0MsH

2Keff

)3/2(√
Keff

A

√
1 +

µ0MsH

2Keff

+
1

L

)2]−1})
(10)

where κ = κ0
√

1 + µ0MsH/2Keff and κ0 = √
Keff /A.

Figure 3 compares the prediction of equation (10) with the experimental hysteresis loops
of nanowires having radii of about 5 nm. The best fit is obtained for c0 = 0.16 and
Keff = 0.035 MJ m−3. From figure 3 we see that the agreement between theory and
experiment is excellent unless we approach Hc. In particular, equation (10) exhibits singularity
for H < H0 and leads to the unphysical prediction that M(−H0) = −∞. The physics behind
this singularity is the instability of the original magnetization state at the nucleation field.
The incorrect description of the coercivity is due to the neglect of higher-order perturbation
corrections in equation (4):
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(i) the linear character of equation (4) limits the applicability of the theory to small m and
Ms − 〈mz〉 � Ms and

(ii) equation (4) ignores the micromagnetic localization of the reversal process.

The localization originates from the neglect of higher-order a-dependent corrections to κ:
since a depends on r, these corrections modify the partial differential equation (4b) and its
eigenmode behaviour. A consequence is the localization of the eigenmode responsible for
nucleation [11, 13] and the coercivity reduction shown in figure 3†.

Figure 3. A theoretical fit for the hysteresis loop of Ni nanowire arrays. The inset shows that the
theory overestimates the coercivity.

The fitted parameter Keff = 0.035 MJ m−3 is similar to the maximum shape anisotropy
constant µ0M

2
s /4 = 0.078 MJ m−3. Writing Ksh = (1−3D)µ0M

2
s /4, we see that Keff = Ksh

for D ≈ 0.14. This indicates that finite-thickness effects are not properly described in the
present theory: for infinitely thin wires we would obtain D = 0. For the same reason, the
present approach cannot be used to discuss the comparatively weak thickness dependence of
the coercivity. The value c0 = 0.16 indicates random magnetostatic forces at the wire surface
due to disorder. For pure magnetocrystalline disorder, c0 would be of the order of 0.02, but
magnetostatic charges at the wires’ rough surface (figure 2) give rise to random-anisotropy
contributions dominating the comparatively weak Ni bulk anisotropy (K1 = −0.005 MJ m−3).

In conclusion, we have investigated the magnetization processes in thin Ni nanowires
fabricated by electrodeposition. The wires have radii as small as 5 nm, so interatomic exchange
ensures a largely coherent magnetization state perpendicular to the wire axis. Transmission-

† An analysis of micromagnetic localization in nanowires will be published elsewhere. Note that the ‘failure’ of the
present theory is relative: the overestimation of Hc by a factor of order 2 must be compared with the overestimation
by a factor of 10 or more for other materials (see e.g. reference [13]).
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electron micrography performed on freed wires shows that the wires are polycrystalline with
crystallite sizes of the order of 10 nm. To model the hysteresis loop, the wires are considered as
one-dimensional random-anisotropy magnets, that is, as chains of nanocrystallites. Treating
the magnetocrystalline bulk anisotropy and the surface disorder as a weak perturbation to the
leading shape anisotropy yields an analytical equation for the magnetization as a function of
the applied magnetic field. For small and moderate reverse field, the theoretical hysteresis loop
predictions agree well with experiment, but the coercivity is significantly larger than predicted.
The disagreement is explained by non-linear and localization effects which are contained in
equation (1) but ignored in the linear approximation equations (2) to (10). In particular,
polycrystalline and surface-related wire imperfections modify the eigenvalue spectrum of the
micromagnetic equation and are very effective in reducing the coercivity.

The authors would like to thank Dr L Menon and H Zeng for their help with sample preparation.
This work was supported by NSF and CMRA.
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